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On the spin-up and spin-down of a rotating fluid. 
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Measurements of the azimuthal velocity inside a cylinder which spins up or 
spins down a t  constant acceleration were obtained with a laser-Doppler veloci- 
meter and compared with the theoretical results presented in part 1. Velocity 
profiles near the wave front in spin-up indicate that the velocity discontinuity 
given by the inviscid Wedemeyer model is smoothed out in a shear layer whose 
thickness varies with radius and time but scales with hEh. The spin-down 
profiles are always in excellent agreement with theory when the flow is stabIe. 
Visualization studies with aluminium tracers have made possible the deter- 
mination of the stability boundary for Ekman spiral waves (principally type I1 
waves) observed on the cylinder end walls during spin-up. For spin-down to rest 
the flow always experienced a centrifugal instability which ultimately disrupted 
the interior fluid motion. 

1. Introduction 
Perhaps the first comprehensive experimental study of spin-up is that of 

McLeod (1922). He made extensive velocity measurements of a fluid with a 
free surface in a cylindrical container which was both spun-up and spun-down 
impulsively and noted a departure from his purely diffusive theory which 
‘(increases with angular velocity and with the size of the cylinder, but which 
tends to vanish a t  very low speeds”. Thus McLeod had already observed trends 
which are now known to scale with the Ekman number E,  = v/Qh2. Further- 
more, he attributed the observed differences between theory and measurement 
to the “effect of the base”. It took more than four decades before McLeod‘s 
astute observations were theoretically understood in the now classic paper of 
Greenspan & Howard (1963). 

Recent measurements of spin-up in a cylinder at small Ekman numbers have 
been reported by Goller & Ranov (1968) for a fluid with a free surface and by 
Ingersoll & Venezian (1968) for a contained fluid. Both of these studies point 
out the usefulness of the Wedemeyer (1964) model for impulsive spin-up. The 
measurements of Watkins & Hussey (1976) for impulsive spin-up of a contained 
fluid are likewise in good agreement with velocity profiles computed from the 
full viscous Wedemeyer equation; in this experiment the Ekman numbers were 
in the range where the time scale changes smoothly from one of diffusion to one 
of convection. 
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The present investigation was initiated primarily to provide accurate experi- 
mental data to test the simplified solutions obtained from the extended Wede- 
meyer model in part I. We consider only spin-up and spin-down a t  constant 
acceleration at Ekman numbers sufficiently small (2Za N lo-’) for the theory to 
be valid; moreover, the choice of acceleration rate is restricted so as to realize 
flows which are predominantly stable so that a fair comparison between theory 
and experiment can be made. The experimental apparatus is discussed in $ 2  
and the velocity measurements are presented in $ 3. 

Flow visualization carried out with aluminium-particle suspensions revealed 
that side-wall and end-wall instabilities could not always be avoided a t  the low 
Ekman numbers of interest. During spin-up one could clearly see spiral wave 
bands on the cylinder’s end walls normally associated with instabilities in the 
Ekman boundary layer. Photographic records of these Ekman waves were 
obtained and the stability boundary, determined with the aid of the measured 
velocity profiles, is compared with observations available in the literature. To 
date, experimental investigations of type I waves (due to an inflexional inst- 
ability) and type I1 waves (resulting from an interaction of shear and Coriolis 
forces) have been reported by Faller (1963), Faller & Kaylor (1965), Tatro & 
Mollo-Christensen (1967) and Caldwell & Van Atta (1970) for steady flows 
where the fluid rotates faster than the boundary. Smith (1947) and Gregory, 
Stuart & Walker (1 955) have studied the instabilities which appear when a plate 
rotates beneath a stationary fluid, and a t  intermediate Rossby numbers only 
the single set of observations of Faller & Kaylor (1965) is known to the author. 
The present measurements help to fill in the gap at those intermediate Rossby 
numbers where the fluid rotates slower than the boundary. These data, as well 
as some observations of the spin-down centrifugal instability, are presented in 
3 4. The results are discussed in § 5 and concluding remarks are given in $6.  

In the following presentation we shall use the same definitions as in part 1. 
We remind the reader that variables with an asterisk are dimensional and 
those without are non-dimensional. Also, equation numbers prefixed with I 
refer to the equations in part 1. 

2. Experimental set-up 
A schematic diagram of the experimental apparatus and data-acquisition 

equipment is presented in figure 1. The measurement system is broken down 
into the five components which are discussed briefly in the following subsections. 

2.1. Cylindrical container 

The cylindrical shell was turned from clear lucite stock to an inside diameter 
2a = 15.12cm and a height h = 29.I8cm7 thus giving an aspect ratio 
A = h/a = 3.86. The inner and outer walls were machined parallel (to within 
-I 0.003 ern over the length) and then polished smooth. The cylinder ends were 
faced off flat and parallel (to within f 0.002 em over the diameter) to receive 
quality circular glass plates for flow visualization. The glass was sealed with 
rubber gaskets and held in place by plastic annular frames screwed into the ends 
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FIGURE 1. Diagram of experimental apparatus divided into four component systems: 
motor drive system, laser optics, Doppler signal electronics and r.p.m. indicator system. 

of the cylinder. A shoulder approximately 5 ern in length was cut along each end 
of the cylinder to accept two thin-ring bearings pressed into place. A rigid 
aluminium frame supported the outer races of the bearings and final alignment, 
accomplished with the aid of shim stock, provided a smooth and freely turning 
cylinder. In  operation, the cylinder was filled with distilled water and seeded 
with 0.5,um polystyrene spheres to enhance radiation scattering for the laser- 
Doppler measurements. 

Of primary importance in the experiment is the relative angle 0, between the 
direction normal to the cylinder’s end plates and the rotational axis. The theo- 
retical treatment in part 1 presumes that there will be no stretching of the fluid 
vortex lines due to geometry. According to Pedlosky & Greenspan (1967), the 
end walls may be considered parallel as long as their slopes satisfy the relation 

0, 5 O ( E h  (2.1) 

where E, is the Ekman number based on the maximum angular velocity. Careful 
measurements have shown that the average end-wall slopes could not have been 
greater than 0, = 3.2 x 10-4rad, and they were probably considerably less than 
this. The largest angular velocity encountered was 110rad/s, which gives 
EA = 2.8 x for water at room temperature: thus the requirement (2.1) was 
adequately satisfied for all measurements reported here. 

2.2. Motor drive system 

The cylinder was belt driven by a reversible t h.p. Bodine d.c. motor (denoted 
M 1 in figure 1), whose speed was monitored by a constant-acceleration control 
unit. This unit consisted of a variable speed control (M2) regulating a & h.p. 
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reversible motor (M3) which in turn drove a 10-turn potentiometer (M4) at a 
constant rate. The potentiometer regulated the current from the primary speed 
control (M 5) to the drive motor which then, theoretically, should accelerate the 
cylinder a t  a constant rate. The sign as well as the rate of acceleration could be 
set by the secondary speed control (M2). Not shown in the diagram are the 
clutch and limit switches which helped to provide repeatable runs from one 
angular velocity to another. 

In  practice the cylinder speed curves always exhibited a small jump near zero 
velocity owing to thestatic fiiction of the system. Moreover, the accelerationrate 
for the drive motor under load varied significantly (deviations of 5-10 yo) during 
a run. This problem was ameliorated by making one or two manual adjustments 
of the speed control (M2) during the run; the linearity of the cylinder wall speed 
curve obtained in this manner had deviations of 1-3 % for spin-up and 4-2 % 
fcr spin-down. 

2.3. R.p.m. indicator system 

The instantaneous speed of the cylinder was monitored electronically by the 
r.p.m. indicator system depicted in figure 1. Eight magnets were positioned a t  
equal angles around the face of a plastic disk (R 2) mounted on a rotating shaft 
(R 1) which itself was geared to the drive motor. The irregular wave form picked 
up by the fixed magnetic tape head (R3)  was shaped into a rectangular pulse 
(R 4) and then fed into the frequency meter (R 5). A permanent velocity history 
of the cylinder wall was obtained by plotting the analog output voltage from 
the frequency meter against time on an X -  Y pen recorder (R 6).  

2.4. Laser optics 

The laser-Doppler velocimeter was arranged in the self-focusing reference-beam 
mode originally used by Brayton (1969). In  figure I we note the Optics Tech- 
nology H e N e  CW laser (L 2 )  and its power supply (L I),  which together provided 
a coherent beam of 8 mW and ostensibly operated in a single axial TEM,, mode. 
A parallel-surface flat (L 3) split the incident radiation into two parallel beams 
which passed through a lens (L4) to a common focal point inside the cylinder. 
The heterodyned signal along the reference beam was then defocused (L 7) onto 
the face of an RCA model 8645 photomultiplier (L8) powered by a regulated 
high voltage supply (L9) at, typically, 1600V in a darkened room. The focusing 
lens, mounted on a vernier screw traverse, could be rapidly positioned by a drive 
motor (L 5) and its location relative to the cylindrical wall was determined with 
the aid of a Veeder Root counter (L6). The relation between the lens position 
and the focal position within the cylinder had to be worked out with ray tracing 
techniques because of the relatively thick (about 1.2 cm) cylinder wall. These 
and other details concerning the probe volume, signel-to-noise ratio, etc., are 
available in the author’s thesis (Weidman 1973). 

2.5. Doppler signal electronics 

Again referring to figure I ,  the Doppler signal from the photomultiplier was 
monitored by a d.c. ammeter (D I) ,  and impedance matching to the recording 
electronics was provided by a field-effect transistor (D2). The signal was then 
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filtered (D3), amplified (D4), and observed on either an oscilloscope (D5) or a 
spectrum analyser (D 6 ) .  Accurate frequency calibration of the spectrum 
analyser was made with a signal generator (D7) and digital counter (D8). 
Doppler frequencies, which could be readily measured with this set-up, ranged 
from 7 kHz to almost 1 MHz. 

The signal processing system was relatively unsophisticated in that no 
DoppIer-frequency tracker was employed. Synchronous velocity-time measure- 
ments were obtained by recording the observed Doppler frequency on the 
spectrum analyser and simultaneously depressing the ‘zero-check’ button on 
the X-Y plotter to mark the time of measurement. When acceleration rates 
were too rapid, multiple runs were necessary to obtain a well-defined velocity 
profile. 

3. Mean flow measurements 
Most of the unsteady velocity measurements were taken a t  the three radial 

positions r*/a = 0-334, 0.517 and 0.807 in a plane approximately $h from one 
end of the cylinder. The focal volume of the laser beams was positioned at  a fixed 
radius and the average Doppler frequency was recorded at  various times during 
spin-up or spin-down. In  the presentation of data the velocities are non- 
dimensionalized with the maximum cylinder speed and plotted against the 
non-dimensional time f = t*/t:, where tf = 1 (Qi -Q,)/aI is the acceleration 
period of the cylinder. Also included in each figure is a typical velocity history 
of the cylindrical container as recorded on the X-Y plotter. 

The theoretical curves were computed using the average acceleration rate of 
all runs at a given radius. In  table I we list the average Ekman numbers 
E, = v/,/afh2 for the cases which necessitated multiple runs to  obtain a well- 
defined velocity profile; the maximum percentage deviation from the average 
and the total number of runs are also tabulated. Initial and final angular velo- 
cities are not listed since they were always repeatable to better than 1 yo. The 
parameters in the figure captions represent a simple average over all runs a t  all 
radii. 

As a measure of how rapidly the cylinder is accelerated or decelerated, a 
comparison of the wall acceleration period tz with the ordinary impulsive 
Ekman spin-up time t& = E;24Q-l is made in figures 2, 4 and 6 by plotting the 
ratio fxn = t&/tz. Note that this is the inverse of the abscissa in figure 11 of 
part 1. 

3.1. Nonlinear spin-up 

Measurements for spin-up from rest covering the Ekman numbers 

E,  = 2.34 x to 27.0 x lo-‘ 

are given in figures 2 (a)-(c). The final angular velocity in each case was approxi- 
mately llOrad/s. Interior solutions for f < 1 were obtained by numerically 
integrating equation (I 3.1 1) for the characteristic paths using the full nonlinear 
expression (I 2.6) fort@); the solutions were continued into the post-acceleration 
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Figure Average Maximum yo Number of 
number .*/a E, x lo6 deviation runs 

0.334 
0.517 
0.807 

0.334 
0.517 
0.807 

0-330 
0.514 
0.626 
0.727 
0.804 
0.850 
0.900 
0.925 
0.950 
0.975 

8.70 
8.7 1 
8.75 

2.36 
2.26 
2.36 

10.29 
10.33 
9-59 
9.56 

10.18 
9.75 
9.70 
9.82 
9.62 

10.48 

2.0 
2.5 
3.0 

2.0 
4.0 
3.0 

1.0 
1-5 
1.0 
0.7 
2.5 
1.0 
0.5 
1.0 
1-0 
1.5 

3 
6 
5 

7 
7 
9 

3 
4 
3 
3 
9 
3 
3 
3 
3 
3 

TABLE 1. Experimental conditions for multiple runs in figures 2(b) and (c) and 4(c). 

region i? > 1 with the aid of equation (I 3.4). The dotted lines indicate the double- 
valuedness of the inviscid interior solution a t  the wave front. 

It seems appropriate to provide here a qualitative description of the spin-up 
process as derived from the flow-visualization study to be reported in $4. When 
the cylinder begins to accelerate, distinct roll waves appear around the perimeter 
of the end wall, where the fluid is sheared. (These eddies have also been observed 
by McLeod 1922.) At the same time a strong cylindrical jet erupts from each end 
of the container and speeds axially along the curved wall towards the mid-plane. 
At low accelerations (a 2: 0.2rad/s2) the turbulent jets recede back to the end 
walls before reaching the central plane, but a t  moderate accelerations 

(a N l.0rad/s2) 

they coalesce to form a turbulent annular column adjacent to the curved wall; 
the column soon disappears in the reverse order in which it was formed, namely, 
i t  relaminarizes first near the mid-plane and then recedes back to the end plates. 
At still larger accelerations (a 2 4rad/s2) the turbulent column thickens and 
then relaminarizes completely at the outermost radii as the fluid there spins up; 
thus we have the picture of a turbuleiit annular column of rotating fluid bounded 
on both sides by laminar flow. The turbulent column folIows for a short while 
behind the wave front, but eventually disappears, leaving an entirely laminar 
approach to solid-body rotation. 

Photographs of the end-wall flow patterns visualized with aluminium tracers 
are presented in figure 3 (plate 1). These prints correspond to successive times 
during spin-up from rest at the Ekman number E, = 7-64 x lo6. Photograph 
(a)  shows remnants of the initial roll waves, which have broken up and dispersed; 
the central core of undisturbed fluid can also be identified. In  ( b )  the large eddies 
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t = t*/t; 
FIGURE 2. Spin-up from rest. 0, .*/a = 0.807; A,  0.517; 0,0-334; -, interior solution; 
0, A, +, wave-front flow-visuakation data. (a) E, = 27.0 x a, = 106*6rad/s, 
a = 0.209rad/s2, t,, = 0.0541. (b) E, = 8.74 x a, = 108*7rad/s, a = 1.52rad/s2, 
I,, = 0.409. (c) E, = 2-34 x 10-8, a, = 108.7 rad/s, a = 21-1 rad/s2, ~ E K  = 5.68. 
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t = t*p: 

FIGURE 4 ( a ) .  For legend see p. 718. 

have disappeared and the first appearance of Ekman spiral waves can be dis- 
cerned a t  large radii. In  (c) a complicated pattern of bifurcating Ekman spirals 
has developed and the small quiescent core shows that virtually all the fluid 
has now begun to spin up. Photograph (d), taken just after the cylinder reached its 
steady-state velocity, exhibits symmetric Ekman spirals of almost constant 
wavelength, but these eventually disappear as the fluid catches up with the 
angular speed of the cylinder. 

A n  estimate of the turbulent pumping in the Ekman layers was made by 
observing the duration and radial extent of the turbulent annulus. It is concluded 
that the flow was predominantly laminar for the two largest Ekman numbers, 
but a t  E, = 2.34 x the turbulent pumping may account for as much as 
30 yo of the total flux through the Ekman layers. 

A measurement of the arrival time of the wave front a t  the three radial 
measurement stations was obtained from end-wall photographs similar to those 
in figure 3 taken at the various Ekman numbers. These data, plotted as zero 
velocity in figures 2 (a) - (c) ,  appear earlier than the first recorded velocities in 
each case. A discussion of this point is deferred to 3 5. 

3.2. Nonlinear spin-down 

Measurements of spin-down to rest from Q f  N llOrad/s are plotted in figures 
4 (a)-(c). Only relatively slow decelerations covering the Ekman numbers 
E, = 9.92 x 10-6 to 25.4 x 10-6 are presented since the flow was observed to 
become unstable rather quickly when the cylinder was spun down more rapidly. 
The interior solutions have been computed from (I 4.9) for f 6 1 and from (I 4.5) 
for t > 1. The calculations in figures 4(b) and (c) are based on an average de- 
celeration rate to rest, but in figure 4 (a )  the small impulsive stop was taken into 
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FIGURE 4 ( b ) .  For legend see p. 718. 
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FIGURE 4. Spin-down t o  rest. -, interior solution. (a)  E, = 25.4 x Qi = 108-3 rad/s, 
a = -0-179rad/s2, tEK= 0.0485; 0, r*/a = 0.807; A,O.517; 0, 0.334. ( b )  E ,  = 13.8 x 
Qi = 108.9rad/s, a = -0*535rad/s2, t,, = 0.148; O,r*/u = 0.975; 0, 0.950; Q, 0.925; L] ,  
0.900; 0, 0-850; v,  0.804; A, 0.514; 0 ,  0.330. ( c )  E, = 9.92 x Ri = 109.0rad/s, 
a = - 1*083rad/s2, ZEK = 0-296; 0, T* /U = 0.975; 0, 0.950; 0 ,  0.945; a, 0.900; 0, 0.850; 
v,  0404;  0 ,0 .727;  x ,0*626; A, 0.514; 0 ,0 .330.  
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FIGURE 5. Boundary-layer profiles for spin-down to rest; t, = time for instability as observed 
fromflow visualizations. -, boundary-layer solution. (a)  E,  = 13.8 x R, = 108.9 rad/s, 
a = -0.535rad/s2, t,, = 0.148. (b)  E, = 9.92 x Ri = 109.0rad/s, a = - 1.083rad/s2, 
ZEEK = 0.296. 
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account; this is apparent in the small slope discontinuity in the velocity at 
f = 1. The radial boundary-layer profiles, figures 5 (a )  and (b), were obtained by 
cross-plotting the data in figures 416) and (c) at selected times. The onset times 
fc of the centrifugal instability, noted from the flow visualizations, are marked 
in figures 5 (a )  and ( b )  and the theoretical velocity distributions are those obtained 
by numerical integration of (I 4.17). 

3.3. Linear spin-up and spin-down 

Measurements of small Rossby number flows a t  moderate accelerations from 
one non-zero angular velocity to another are presented in figures 6 (a )  and ( b ) .  
Corresponding theoretical results for spin-up (figure 6 a )  were obtained from 
the solutions in 5 3.5 of part 1, using the value k = 1.02 for the linearized suction 
in (I 2.8). A calculation of the terminal position of the dividing characteristic gives 
(r,Jp = 0.613; the shear discontinuity a t  the wave front (dividing characteristic) 
was so weak when it crossed r+/a = 0-807 that it  cannot be discerned at  its time 
of crossing, f = 0.474. 

The linearized spin-down curves in figure 6 ( b )  were calculated from the Airy- 
function solution (I 4.11). The constant of proportionality for g(a) in (I 2.8) was 
k = 1.03. We note that lc was not chosen to obtain a best fit with the experimental 
results, but rather as a best fit toRogers 85 Lance’sEkman-suction computations 
(cf. figure 1 of part 1) in the ranges 0.8 6 s 6 1.0 and 0.8 6 a < 1.0. 

3.4. Remarks about the measurements 
An analysis has shown that the expected relative errors for the frequency, time 
and position measurements are 2 0.015, 0.005 and 0.010 respectively. More 
scatter is evident in figures 2 (6) and (c) and 4 (c) owing to the slight non-repeat- 
ability of the multiple runs (see table 1) .  Also, since the measured speed curves 
for the cylinder were only linear to within 3-3 %, the selection of an average 
acceleration rate introduces additional errors when comparing theory with 
experiment. 

The reader is reminded that the measurements presented here are really mean 
flow data since they represent an average in both time and space. It is estimated 
that Doppler-frequency fluctuations greater than about 0.2 Hz could not be 
discerned, and hence the velocities constitute an average over as many as three 
cylinder revolutions a t  the highest rotational speeds. At low angular velocities, 
on the other hand, the Doppler signal could be resolved over just a fraction of a 
revolution of the fluid. No azimuthal asymmetries were apparent at  these speeds, 
except in the final stages (f 2 1) of spin-down to rest. Here, significant velocity 
excursions (Avlv 2: 0.15) due to the breaking up of the regular Gortler cells were 
apparent; the plotted data for these cases represent an average of the observed 
low-frequency fluctuations. 
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FIGURE 6. SmallRossbynumberflows. O,r* /a  = 0.807; A 0.517; 0 ,0*334;  -, linearized 
interior solution. (a)  Spin-up; E, = 16.2 x lo-@,& = 39.0rd/s,C2, = 104*0rad/s, a = 0.433 
rad/s2, t,, = 0.200, t = 0.474 is time of passage of wave front across station T*/u = 0.807 
according to the interior solution. (b)  Spin-down; E, = 15.8 x Ri= 104.4 rad/a, 
Qi = 39.8 rad/s, a = - 0.423 rad/s2, tEK = 0.200. 
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4. Stability observations 
Qualitative and quantitative observations of the fluid motion during spin-up 

and spin-down were made with the aluminium-tracer visualization technique; 
cf. Maxworthy (1971). With proper illumination, most of the spin-up and 
spin-down flow patterns, as well as their associated instabilities, could be readily 
observed. 

The fluid transport along the cylinder’s end walls during spin-up could always 
be visualized since the Ekman suction continuously entrained aluminium 
particles from the quiescent interior (region I), pumped them radially out 
through the boundary layers on the end plates, and eventually ejected them 
into the interior fluid behind the wave front (region 11). As the fluid span up in 
region 11, the heavier aluminium flakes were centrifuged to the cylindrical 
boundary, ultimately rendering the fluid transparent. The qualitative features 
of the spin-up motion have already been discussed in 3 3.1. In  the early stages 
of spin-down to rest, the interior motion could not be visualized because the 
aluminium adhered to the cylindrical boundary. Eventually, however, the 
centrifugal instability appeared and formed cellular motions which scoured the 
aluminium flakes off the wall. The tracers then found their way to the fluid 
interior by first travelling axially along the cylindrical wall, and then radially 
inwards through the Ekman layers. 

Measurements of the stability boundaries for the Ekman and centrifugal 
instabilities observed in this experiment are presented in the following two 
sections. 

4.1. Ekman instabilities 

Documentation of the Ekman-spiral instabilities which attended spin-up was 
made in the following manner. High-speed photographs of the patterns on the 
cylinder’s end plates were taken at 3 s intervals for accelerations closely dupli- 
cating the Ekman numbers of figures 2 ( a )  and ( b )  and at 1 s intervals for the 
fastest acceleration, corresponding to figure 2 (c). Close scrutiny of the sample 
photographs in figure 3 will reveal three black circles on the glass cover plate, 
corresponding to .*/a = 0.334,0-517 and 0.807. From an analysis of the negatives 
one could determine whether a particular circle corresponded to an Ekman flow 
that was laminarly stable, laminarly unstable or (with some subjective judgment) 
turbulent. For example, in figure 3 (d) the flow was noted to be laminarly stable 
at the inner circle and laminarly unstable a t  the two outer circles. If the flow 
around a given circle appeared to be only partially unstable (uncommon), or if 
the circle appeared as a demarcation between laminar flow and the laminar 
spiral waves, i t  was called ‘marginally stable’. The measured velocity profiles 
were then used to  compute the local Rossby number Ro and Reynolds number 
Re. In  calculating these parameters we adhere to the definitions prevalent in the 
literature, namely, 

Ro = &&/VWall = (v*-Qr*)/2r*Q, Re = QS/v  = Iv*-Rr*I/(vR)4, 

where V,  = v* - !&* is the local geostrophic velocity and 6 = (v/Q)J is the thick- 
ness of the Ekman layer. 
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FIUURE 7. Observations of Ekman waves and transition to turbulence. A, laminarly stable; 
X , turbulent. Group 1 (Ro > - 0-25) : 0, marginally stable; 0 ,  laminarly unstable. Group 2 
(Ro < - 0.25): +, marginally stable; 0, laminarly unstable. Comparison data for (Re),: 
-.- , Tatro & Mollo-Christensen (1967); -, Caldwell & Van Atta (1970); - -, Faller & 
Kaylor (1965); Q, m, Gregory et al. (1955); 8 ,  0, Smith (1947); 9, type I waves; @, 
type 11 waves, Faller & Kaylor (1965). 

The stability measurements are summarized in figure 7. In  order to help 
determine whether we are observing the almost stationary type I or rapidly 
moving type I1 waves, measurements of the average wavelength A (band spacing 
normal to the wave fronts) and the angle of orientation $ with respect to the 
geostrophic flow were obtained. The data fall into two groups as indicated in 
figure 7. In  the first group, for Ro > - 0.25, results from 69 measurements give 
an average wavelength h/6 = 20.4 with a standard deviation of 2-4. The bands 
were all oriented to the right of the geostrophic flow a t  angles varying from 
1 to 7". The waves in the neighbourhood - 0.20 < Ro < - 0.25 often appeared 
in a bifurcating pattern. A listing of the measured wavelengths along the shaded 
stability boundary sketched in figure 7 shows no apparent trend with Rossby or 
Reynolds number (Weidman 1973). The few remaining measurements in the 
second group revealed a general decrease in wavelength from about h/6 = 18 
near Ro = - 0.25 to h/6 = 10 at Ro = - 0.35 with band orientations still to the 
right of the geostrophic flow. 

46-2 
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Wave 
Reference type 

Measurememts 
Smith (1947) I 
Gregory et al. (1955) I 
Faller (1963) I 
Faller & Kaylor (1965) I1 
Faller & Kaylor (1965) I 
Faller & Kaylor (1965) I1 
Tatro &Mollo-Christensen (1967) I 
Tatro & Mollo-Christensen (1967) IIf 
Caldwell & Van Atta. (1970) I1 
Present data I1 

Theory 
Faller & Kaylor (1966) I 
Faller & Kaylor (1966) I1 
Lilly (1966) I 
Lilly (1966) I1 

- 0.5 452 
- 0.5 436 

0.0 125 f 5 
(Re), = 70+412Ro 
-0.216 210 
-0'216 234 

(Re), = 124.5+7*32Ro 
(Re), = 56.3+ 116.8Ro 

0.0 56.7 
0.0 60 

0.0 118 
0.0 55 
0.0 110 
0.0 55 

- 
21.5 
10.9 
22 - 33 
15 
38 
11.8 
27.8 2.0 

20-4 2 2-4 
- 

- 
14" 

14.5" 5 2" 
+5" to - 20" 

Positive 
Negative 

14-6" f 0.8" 
0" to -8" 

- l 0 t o  - 7 "  
- 

11 10" to 12" 
24 - 15" 
11.9 8" 
21 - 20" 

t A recent study by Cerasoli (1975) suggests these waves were disturbances induced 
by the measurement probe. 

TABLE 2. A summary of Ekmm instability measurements and theory. 

A summary of existing theoretical and experimental data on Ekman insta- 
bilities is provided in table 2. The angle of orientation 4 is positive if the bands 
lie to the left of the geostrophic flow when viewed from above the Ekman layer. 
The critical Reynolds numbers, (Re),, for both wave types in table 2 are plotted 
in figure 7 for comparison with the present measurements. We have chosen not 
to plot Tatro & Mollo-Christensen's (1967) measurements reported as type I1 
Ekman instabilities since there is strong evidence in the recent study by Cerasoli 
(1975) that these waves were probe-associated disturbances. Gregory et al. (1955) 
made a series of observations a t  Ro = - 0.5, and the Reynolds numbers given 
here for both the onset of type I waves and transition to turbulence represent an 
average of their data; also, the non-dimensional wavelength reported here for 
their type I waves was calculated by Faller (1963). The (Re), measurements for 
type I1 waves reported by Caldwell & Van Atta (1970) include a correction for 
finite-amplitude effects proposed by Faller & Kaylor (1966). 

Since the present measurements, as well as the negative Rossby number 
observations of Faller & Kaylor (1965), were made under unsteady flow 
conditions, i t  is of interest to determine when and if they can be compared with 
the steady-flow measurements of other investigators. Faller & Kaylor (1965) 
argue that, since the Ekman layer responds rapidly (in a time of order Q-l) to 
changes in the geostrophic flow, the motion should be relatively steady on the 
spin-up time scale (of order t&) appropriate for their experiment. What is not 
discussed is the time scale for the formation of the spiral instabilities, which 
depends on the amplification rates a t  given Re and Ro. Their own observations, 
however, help resolve this point: the measurements reported a t  Ro = - 0.216 for 
both the type I and type I1 waves were taken 1.32 revolutions after accelerating 
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their tank from 0*624rad/s to l.lOOrad/s, and so the instabilities can respond as 
fast as the Ekman boundary layer. In  the present investigation the time scale for 
changes in the geostrophic flow ranged from O(t&) for the almost-impulsive 
spin-up case to the much longer times O ( t z )  for the slower accelerations, and 
hence there is reason to believe that the flow was reasonably 'steady'. This 
contention is supported by the results: in figure 7 a fairly well-defined stability 
boundary results, even though the data were gathered over a wide range of 
acceleration rates. The observed scatter is attributed partly to the photographic 
method of data acquisition and partly to the inexact correspondence between 
the Ekman numbers of the photographs and those of the velocity measurements. 
Because of these qualifications, measurement errors of the order of 5-10 % are 
expected. 

4.2. Centrifugal instabilities 

Clear visualization of the centrifugal instability was made possible by directing 
a stroboscopic light along the axis of the cylinder and synchronizing it with the 
cylinder speed during spin-down. Initially the walls were dark owing to the 
coating of aluminium on the interior surface, but then alternating light and dark 
circumferential streaks indicating the erosion pattern of the vortical cells 
appeared after the onset of instability. At large, almost impulsive decelerations 
the instability was observed within a fraction of a second of the spin-down 
motion commencing. Discrete circles formed simultaneously (as near as could 
be determined) across the length of the cylinder, but they rapidly broke up into 
bifurcating patterns as the flow tried to adjust itself to a new, larger wavelength. 
The development of these types of instabilities beyond their initial stage is 
discussed by Maxworthy (1971). When the cylinder was spun down less rapidly 
the onset of instability occurred later, and a t  the slowest rates of deceleration 
(1.1 < 0.2 rad/s2) the flow appeared stable during well over half the deceleration 
phase. At these slow decelerations the instability was first observed at about a 
distance &It in from the end walls, but it soon spread across the entire length of 
the cylinder. The streaks took the form of spiral bands curling outwards from the 
mid-plane a t  x = 0 with an ever increasing helical angle to the end walls at 
x = L- ih .  Maximum helical angles (measured with respect to cross-sectional 
planes perpendicular to the z axis) of 15 to 20" were observed. 

The elapsed time between the start of spin-down and the first appearance of 
the streaks was measured for a variety of deceleration rates. These measurements 
must give a late time for instability, primarily because it takes a finite time for 
the amplification rates of a given wavelength to become large enough to scour 
away the aluminium particles which were centrifuged to the cylinder wall. 
Since it is difficult to estimate the correction due to this effect, we simply present 
the stability boundary as observed. In  figure 8 the ordinate is the critical Gijrtler 
stability parameter, defined as = R,(O/a)) = (wr  - Q) 8%a+/v. R, is the 
Reynolds number based on the momentum thickness 8, which is calculated 
from the equation 

Oa2(wT - Q)2 = (w* - Q) (wT - w*)  ( T * ) ~  dy*, 
I O U  
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0 1 2 3 4 5 6 7 8 

FIUURE 8. Observations of centrifugal instability during spin-down. 0 ,  instability according 
t o  flow visualizations; A, instability deduced from the velocity profiles. Comparison data: 
0, Tillmann (1967); 0, Maxworthy (1971); x , Maxworthy with momentum-thickness 
correction. 

where !2 is the instantaneous angular speed of the cylinder and 0: and o* are 
computedfrom (I 4.17). Measurements by Tillmann (1967) andMaxworthy (1971) 
for impulsive spin-down to rest are included in figure 8, as well as a correction? 
to Maxworthy’s original data. An extrapolation of the present results to 
tz/t& = 0 seems to corroborate the more precise measurements of Tillmann and 
Maxworthy (with correction). 

In  figures 5(a)  and ( b )  we see that, indeed, the visualization data do give a 
late time, since a comparison of the theoretical and experimental velocity profiles 
suggests that instability has already occurred at f N- 0-45 for E ,  = 13.8 x 10W and 
at f N 0.15 for E, = 9.92 x The critical Gortler stability parameter for these 
times, also plotted in figure 8, gives an indication of the error in the flow visualiza- 
tion data. In  any case, both methods for determining the onset of instability 
suggest that the effect of decelerating the cylinder a t  a finite rate is to  increase 
the critical stability parameter above its value for impulsive spin-down. 

5. Discussion of results 
It is clear that the unsteady fluid motion driven by a spinning cylinder a t  low 

Ekman numbers is inevitably complicated by flow instabilities which originate 
a t  the solid boundaries. Laminar spin-up is better behaved than spin-down 
because the motion is always centrifugally stable and because the Ekman 
instabilities, confined to thin layers adjacent to the top and bottom of the cylinder, 
do not measurably disrupt the interior flow. In  $5.1  we compare experimental 

t The correction arises because Maxworthy (1971) assumed a Rayleigh boundary layer 
for the early development near the wall. Tillmann (1967), from an analysis due to Grohne, 
has shown that the small time development of the momentum thickness in an impulsively 
spun-down cylinder is 2 )  - 1 times smaller than for a Rayleigh boundary layer. The correc- 
tion (0.414)q applied to Maxworthy’s measurements gives excellent agreement with 
Tillmann’s data. 
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and theoretical velocity profiles as affected by these instabilities, and in $5.2 
the scaling of the vertical shear layers is considered in detail. The results of the 
stability observations are discussed in the remaining two sections. 

5.1. Mean interior flow 
In order to interpret the flow-visualization measurements for the arrival of the 
wave front, one must realize that the tiny aluminium tracers respond to very 
weak shearing motions (Maxworthy 1971). In  the appendix, a model for the 
response of aluminium flakes to a propagating shear front is presented; the 
results suggest that the non-dimensional azimuthal velocity u and its time deri- 
vative du/d f  are of the orders 10-4 and 10-3 respectively when the aluminium 
disks begin to rotate under the shearing motion. Consequently, these data (solid 
symbols) a t  the three measurement stations have been plotted as zero velocity 
in figures 2 (a)-(c). Furthermore, under the assumption that du/& is negligibly 
small at these points, one can sketch in the missing velocity profiles a t  the 
viscous front; these are the dashed curves in the spin-up figures. 

Let us consider now the measurements for spin-up from rest. It has been shown 
by plotting that the agreement between the experiment and the theoretical 
profiles in figures 2 (a)-(c) is much better than could have been obtained using a 
linear expression for the Ekman suction, so the flow is truly nonlinear for 
AQ/Q = 1. At lower Rossby numbers (0.26 6 AQ/Q < 0.58), Ingersoll & 
Venezian (1968) demonstrated that a linear Ekman-suction model adequately 
predicts the spin-up motion away from the wave front, but they found that the 
proportionality constant depends on the Rossby number. This result is easily 
explained in terms of Rogers & Lance’s Ekman-suction curve (figure 1, partl); 
clearly, a linear fit in the range 1.0 2 AQ/Q 2 0.2 gives a reasonable approxima- 
tion to the Ekman flux, but the optimum constant of proportionality varies with 

Although the problem of the velocity discontinuity in the inviscid solution 
has not been resolved, the experimental data in figures 2 (a)  and ( b )  show that its 
effect is felt only locally a t  the wave front in the form of a viscous tongue jutting 
ahead of the inviscid profile. After the passage of the tongue, the interior fluid 
spins up in almost exact agreement with the theoretical predictions for these 
accelerations where tz/t& > 1. In figure 2 ( c ) ,  where tz/tj& < 1 and the flow is 
nearly one of impulsive spin-up, the experimental data depart significantly from 
the theory over a major portion of the time. It is difficult to estimate the effect 
of the observed turbulent mixing for this case, but it is doubtful whether it 
could account entirely for the large discrepancy between theory and experiment. 
The sizable velocity discontinuity suggested by the inviscid solution shows the 
need for a more rigorous analysis of the inviscid equation a t  the wave front (e.g. 
a shock-fitted solution), or a computed integration of the full viscous equation 
before rejecting the Wedemeyer model a t  these large acceleration rates. 

In spite of the fact that the details of the wave front are seen to vary con- 
siderably with E,, the interior solution is always in good agreement with the 
experimental measurements during the final stages of spin-up. Thus the radially 

asp. 



728 P .  D.  Weidrnan. 

dependent spin-up times t& presented in figure 11 of part 1 ,  and computed for 
the present experimental conditions (En = 9.3 x still provide a good 
measure of the global spin-up time. 

The spin-down data in figures 4 (a)-(c) cover a range of decelerations for which 
tg/t& > 1.  The difference between the inviscid theory and experiment near 
.*/a = 1 in figures 4(b) and (c)  is shown in figures 5 ( a )  and ( b )  to be due to the 
side-wall boundary layer when .f < fC and due to the centrifugal instability at 
later times. The good agreement prior to the observed onset of instability 
vindicates a posteriori the ‘quasi-steady ’ assumption made in the theoretical 
computation. The effect of the instability is to decelerate the fluid more rapidly 
by extracting energy from the mean flow. This is particularly evident a t  late 
times in figures 5 ( a )  and (b) ,  when the cells become large and extend well into 
the fluid interior. The flow at the innermost radial station remains virtually 
unaffected by disturbances from the side wall as far as the measurements were 
taken in figures 4 (a) - (c) ,  even during the late post-deceleration phase; the agree- 
ment between theory and experiment in this region confirms the algebraic decay 
predicted in part 1 .  

The close correspondence between theory and measurement for the linear 
flows in figures 6(a) and (b)  provides a good example of the accuracy made 
possible with laser-Doppler velocimetry when the flow is laminar and stable. 
One might wonder about the effect of the centrifugal instability during spin- 
down, when in fact the flow-visualization measurements for the onset time fc 
show that the vortical cells should have appeared before the end of the decelera- 
tion phase. Clearly, the measurements in figure 6 ( b )  indicate that the flow was 
restabilized before any finite-amplitude effects could be discerned in the velocity 
profile a t  the nearest radial station +/a = 0.807. 

5.2.  Scaling of the vertical shear layers 

Venezian (1970) has shown that the shear discontinuity a t  the wave front given 
by Wedemeyer’s (1964) analysis is smoothed out in a viscous layer O(hE&) as 
long as AEA < 1 .  Indeed any viscous adjustment of the azimuthal velocity 
according to equation (I 3.6) must occur in a layer of this size since the viscous 
terms on the right-hand side only become important when a/& N (AEA)-l for 
small En. Consequently, the shear-layer thickness 8, must scale according to 
the relation 

for both spin-up and spin-down. Watkins & Hussey (1976) report that according 
to (I 3.6) the transition from a purely convective time scale to a viscous time 
scale begins near A2Eh = 0.02, and hence the scaling given by (5 .1)  can only 
be expected when AEA < 0.14. 

Values of 8, have been estimated from sketches of the radial velocity profiles 
at various times f and are plotted against AEA in figure 9 .  The Ekman numbers 
were calculated from the instantaneous angular speed of the cylinder, i.e. 
EQ = v/h2Cl(f). Open symbols correspond to the free shear layer in spin-up, 
closed symbols to the boundary layer in spin-down, and the dots relate to 
shear-layer estimates taken from the numerical calculations of Watkins & 

&,/a cc A E ~  (5.1)  
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0’4 r 

FI~URE 9. Estimates of vertical shear-layer thickness. 3 , 2 ,  p , free shear layer in spin-up 
at constant acceleration, present experiments; +, side-wall shear layer in spin-down a t  
constant deceleration, present experiments; 3 ,  free shear layer in impulsive spin-up, from 
calculation of Watkins t Hussey (1976). 

Hussey (1976). Error bars indicating the uncertainty in the estimates of 8, 
according to the definitions listed below are included when necessary. 

In  the radial-velocity profiles sketched from the spin-up data in figures 2 (a) 
and ( b ) ,  8, was measured as the distance over which the true viscous front rose 
from zero velocity and merged with the inviscid profile. Only profiles for f > 1 
could be obtained from the data in figure 2 ( c ) ,  and here 8, was taken to be the 
distance in which the velocity rose to 0.1 an,, since this was the region where the 
viscous tongue merged with the steep interior profile. 

Radial-velocity distributions plotted from the four angular-velocity profiles 
given in figure 5 of Watkins & Hussey (1976) showed that the curvature went 
to zero (or changed sign) where the viscous front departed from the inviscid 
profile, hence estimates of 8, were easily obtained. These profiles, as well as those 
obtained from the experimental data, exhibited only a slight steepening a t  the 
wave front. Estimates of the shear-layer thickness were not made for the 
remaining distributions presented by Watkins & Hussey because they fell 
outside the range A E i  < 0.14. 

Boundary-layer thicknesses for spin-down were calculated from the theoretical 
velocity distribution in figures 5(a)  and ( b )  a t  times prior to the observed in- 
stability, when theory and experiment were in substantial agreement. Here 8, 
was measured from the wall to the point in the interior a t  which o - T~ = 0.99 x 
(wI - 71); this is essentially the point where the curvature in the velocity profiles 
drops to zero. 

Some dependence of 8, on the acceleration rate a is expected as well as some 
differences between spin-up and spin-down. Nevertheless, the results collected 
in figure 9 are all of similar order and offer good evidence for the scaling suggested 
by (5.1). The line drawn through the data has a slope of 2.6. 
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5.3,  Ehman instabilities 
The Ekman-boundary-layer instabilities for Ro > -0.25 in figure 7 are char- 
acteristic of type I1 waves. The wave angle orientations, for example, are always 
negative in agreement with theoretical calculations, although we see from table 2 
that Faller & Kaylor (1965) have observed type I1 waves at positive 4. The 
average wavelength h/6 = 20.4 measured here is somewhat smaller than both the 
measurements and theoretical calculations reported by Faller & Kaylor in 
table 2, but there is close agreement with the numerical calculations of Lilly 
(1966). An extrapolation of the shaded stability boundary in figure 7 gives a zero 
Rossby number intercept near (Re), = 60, in good agreement with the theoretical 
predictions (Re), = 55 as well as the experimental estimates (Re), = 70 and 
(Re), = 56.7 reported by Faller & Kaylor (1965) and Galdwell& Van Atta (1970), 
respectively. 

Although thereis strong evidence that the instabilities observed for Ro > - 0.25 
are of the type I1 mode, it is less obvious what is happening at larger negative 
Rossby numbers. Faller & Kaylor (1965) measure onset of type I1 waves where 
transition to turbulence is noted in the present study, and their critical Reynolds 
number for type I waves is close to the type I1 stability boundary measured 
here. Progressing towards more negative values of Ro the band spacing decreases 
to values which might be typical for type I waves, but the bands are still oriented 
to the right of the geostrophic flow. Some of the discrepancies between the present 
measurements and those of Faller & Kaylor (1965) may be due to experimental 
error in the present data or real differences between the two experimental flows 
or both causes, but in either case there is no problem of probe-induced instabilities. 
Carefully controlled experiments of sufficient accuracy will be necessary to 
straighten out these discrepancies. 

One can speculate as to why the type I waves are not observed when, judging 
from the ample theoretical and experimental information available a t  zero 
Rossby number, one would expect them to appear (at least for small negative 
Ro) at some Reynolds number between the type I1 stability boundary and the 
curve indicating the onset of turbulence in figure 7. It may be that visualizations 
with the opaque aluminium particles viewed through the bottom surface favour 
a particular mode of instability. In  fact, the theoretical studies of Faller & 
Kaylor (1966) and also Lilly (1966) show that of the two wave modes the type I1 
vortical rolls are the ones centred closest to the solid boundary. 

The liberty was taken of extending the curve defining the onset of turbulence 
to the measured values reported by Smith (1947) and Gregory et al. (1955) a t  
Ro = - 0.5. In  the region of small positive Rossby number (Ro 5: 0.15), Caldwell 
& Van Atta (1970) note a transition to turbulence at Re = 148, while Tatro & 
Mollo-Christensen report a value above Re = 200. An extrapolation of the present 
data compares more favourably with the former investigators, but the transition 
Reynolds number may depend appreciably on the test facility and other factors 
which have not been experimentally controlled. 
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The data in figure 8 show the curious result that, when the cylinder is spun 
down at  a finite rate, the critical Gortler stability parameter increases significantly 
above the values measured by Tillmann (1967) and Maxworthy (1971) for im- 
pulsive spin-down to rest. We note that the measurements of the latter investi- 
gators indicate finite amplitude instability since the computations by Hammerlin 
(1955) and Smith (1955), both representing improvements over Gortler’s (1940) 
original calculations, give a minimum value = 0.3 for neutral stability. 
Likewise, the present measurements represent similar finite-amplitude observa- 
tions, although the instability times noted from the aluminium-particlevisualiza- 
tions are undoubtedly somewhat later than would have been obtained with 
neutrally buoyant particles. The apparent agreement between the present 
measurements extrapolated to tz,/t$, = 0 and those of Tillmann and Maxworthy 
suggests that a unique value of the Gortler stability parameter ((Go)c II 6.5) is 
sufficient to predict ‘finite amplitude’ instability for impulsive spin-down to 
rest; a possible explanation for why this value does not also apply when the 
cylinder is spun down at a k i t e  deceleration is given in the following paragraph. 

The circular patterns observed a t  instability for nearly impulsive spin-down 
in the present experiment showed that the ratio of the axial velocity to the 
azimuthal velocity relative to the wall was small; in this respect the experiment 
corresponded to one-dimensional flow over a concave wall and the criterion for 
instability would be qualitatively that originally given by Gortler (1940). 
Furthermore, the onset of instability would be independent of the axial co- 
ordinate as noted in the present experiment. The observation of helical bands 
for the slow decelerations, on the other hand, indicates that the flow adjacent 
to the wall was substantially two-dimensional; in this case the stability criterion 
due to Ludweig for spiralling motions would be more appropriate. Ludwieg’s 
(1964) stability boundaries calculated for viscous flow with helical streamlines 
can be used to show how the onset of instability might first occur at a particular 
axial station away from the mid-plane as observed in the present experiment. 
Moreover, although Ludwieg’s results do not directly explain the increased 
magnitude of (Go)c for the spiralling flow, there is no reason to believe it should 
not change since the instability is of a different type. The mechanism for in- 
stability may be somewhat more complicated than indicated above because 
the actual flow is known to be three-dimensional, but Ludwieg’s (1964) stability 
analysis accounts for one observed feature not otherwise explained. 

6. Summary and conclusions 
Temporal velocity distributions for spin-up and spin-down at constant 

acceleration have been obtained using laser-Doppler anemometry. These measure- 
ments along with the calculated spin-up time scales given in figure 11 of part I 
suggest that the transient motion can be classed as either ‘driven’for therelatively 
slow accelerations or ‘impulsive’ for the rapid accelerations, with transition 
occurring when t$& = O( 1) .  These flows are accompanied by time-dependent 
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vertical shear layers which scale, approximately, with the instantaneous value of 
AEk as long as AEh < 0.14. In  nonlinear spin-up the shear layer propagates 
away from the cylindrical wall, but in spin-down i t  remains attached as a 
boundary layer and provides the setting for centrifugal instability. 

A comparison of the extended Wedemeyer theory with experiment for 
impulsive-like flows when tz/ t& < O( 1)  is tenuous at best. The strong centrifugal 
instability which soon engulfs the interior fluid motion precludes any possible 
evaluation of the spin-down theory in this parameter range. For the case of 
nearly impulsive spin-up the appreciable velocity discontinuity suggested by the 
numerical calculations shows the need for a more rigorous analysis of the inviscid 
Wedemeyer equation when accelerations are large. The measurements clearly 
deviate from the present (incomplete) inviscid computations for the flow near 
the wave front if one assumes that the observed turbulent shear column had 
negligible influence on the real flow. Further experiments are called for to obtain 
data at low enough Ekman numbers for the theory to be valid, but not so low 
that the flow becomes turbulent. 

The measured velocities for the relatively slow accelerations when tz/t& > O( l), 
however, nicely corroborate the generalized Wedemeyer theory for both linear 
and nonlinear flows away from the propagating shear layer in spin-up and outside 
the region of instability in spin-down. In  particular, the ‘quasi-steady’ theory 
describing the side-wall boundary layer for spin-down as well as the algebraic 
decay to rest are confirmed experimentally. The centrifugal instability has a 
direct influence on the interior flow which results in a more rapid spin-down in 
regions affected. The Ekman instabilities observed during spin-up, on the other 
hand, play a passive role since they do not measurably disrupt the unsteady 
geostrophic flow. The propagating shear layer is seen to affect the spin-up motion 
only locally, and hence can be considered as simply an interesting detail of the 
flow when the wall acceleration period is sufficiently long. Moreover, the detailed 
azimuthal velocity distribution at the wave front may be contained in the 
viscous Wedemeyer equation, but one must be willing to carry out the tedious 
integrations necessary to extract this information. 

The stability boundary in the Re, Ro plane for the spiral waves observed 
during spin-up has been determined from flow visualizations made using 
aluminium-particle tracers. For Ro > - 0.25 the instabilities are evidently of the 
type I1 Ekman mode since the waves are oriented to the right of the geostrophic 
flow, have an average wavelength A/& = 20.4 and a critical Reynolds number 
near 60 at Ro = 0, in substantial agreement with the results of other investigators 
listed in table 2. As with the measurements for positive Ro of Faller & Kaylor 
(1965) and Caldwell & Van Atta (1970) sketched in figure 7, the critical Reynolds 
number for the present experiment has a strong Rossby-number dependence, 
increasing monotonically away from the Ro = 0 axis. It is likely that the curve 
marking transition to turbulence will follow a similar rising trend from Ro = 0 

Measurements of the onset of the centrifugal instability in spin-down have also 
been obtained and compared with the data of Tillmann (1967) and Maxworthy 
(1971) via the Gortler stability parameter. The results suggest that the critical 

to RO = -0.5. 
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Gortler parameter for finite-amplitude instability is a function of the deceleration 
rate for spin-down in a cylinder. The observed features of the flow near the 
boundary at the time of instability show that it changes from being a basically 
one-dimensional circular flow for almost impulsive decelerations to a two- 
dimensional spiralling flow at the slower decelerations. Thus it is argued that the 
critical Gortler stability parameter need not necessarily remain constant since 
the instability changes qualitatively from that described by Gortler (1940) to 
that described by Ludwieg (1964). 

The author is indebted to Tony Maxworthy for his guidance throughout the 
course of this work and also for his valuable comments in the writing of the 
manuscript. The author is grateful to Professor H. P. Greenspan for providing 
the unpublished theoretical results given in the appendix. Finally, particular 
thanks are given to Moritz Flink for constructing most of the experimental 
apparatus and A1 Bleeker for his patient assistance during the long hours of data 
acquisition. This work was supported by the National Science Foundation under 
Grant GK 19107. 

Appendix 
The following model? is used to obtain an order-of-magnitude estimate of 

w and dw/df at the time the aluminium flakes begin to respond to an oncoming 
shear flow. We consider the simplified one-dimensional Wedemeyer equation 
for impulsive spin-up including the effects of viscosity. This leads to a form of 
Burgers’ equation 

for the shear velocity. Here 7 = EA f i t* ,  v = v*/vo and x = x*/h where v,, is the 
velocity of the wall imparting the vorticity to the fluid and EQ = v/Qh2.The 
solution for (A 1) satisfying the boundary conditions @(x, 0)  = 0 and w(0, r )  = 1 
is given by 

v(x,  7) = erfc (r])/[erfc (7) + exp ( -x /Eh)  erfc (()I, (A 2) 

with 

We idealize the aluminium flakes to be perfect flat disks. Then, according to 
JeRery (1922), the angle q5 made by a disk in a vertical plane with the shear 
flow is given by 

(Jeffery’s analytical results have been confirmed experimentally by Goldsmith 
& Mason (1962) for disks rotating in a flow of constant shear.) 

t The author is indebted to Professor H. P. Greenspan (private communication) for 
providing these unpublished theoretical results. 



734 P. D .  Weidman 

I I I I I 1 1 1 1  I I I I 1  1 1 1 1  1 1  
10-5 10-4  10-3 

EL 746 
FIGURE 10. Numerical solutions for AT,,. A, x = I; ., x = 2; z = 3. 

Using the preceding results, Greenspan calculated the time it takes for a 
particle to turn 45" from the initial angle in. The result shows that the visible 
front travels faster than the theoretical front (located a t  x = 7 )  by a time 

A745 = x - 745 = O( [EAT,, log E G ~  7 ~ ~ 1 4 ) .  (A 4) 

In  order to test this prediction and determine the proportionality factor, the 
author performed some numerical integrations of (A 3) for the shear distribution 
obtained by differentiation of (A 2). Solutions were obtained a t  the three spatial 
positions x = 1 , 2  and 3 for values of EQ ranging from 10-6 to 10-11. The results, 
plotted with an expanded vertical scale in figure 10, do confirm the predicted 
time shift given by (A 4); moreover, the curves clearly demonstrate the indepen- 
dence of x for sufficiently small values of  EAT^^. In  the limit EAT,~-+O, an 
asymptotic constant of proportionality of about 1.36 is anticipated. 

Although these one-dimensional calculations do not directly apply to the 
present experiment, one would hope an order-of-magnitude comparison could 
be made. Taking E n  = and x = 1 as representative values for the almost- 
impulsive spin-up measurements in figure 2 ( c ) ,  we use (A2) to evaluate v and 
dvldf at T~~ when the particles begin to rotate. The results are v = O * O O O l O  and 
rlv/df = ( d v / d ~ )  (d7/df )  = (0.022) (0-052) = 0.0011. These estimates provide some 
justification for assuming that both the velocity and its time derivative are 
vanishingly small when the aluminium flakes first sense the approaching wave 
front. 
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